Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 465: 153046, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34813904

RESUMEN

Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice. To provide insights into the adverse outcome pathway (AOP) that underlies these tumors, effects of methidathion in the male mouse liver were examined after 7 and 28 day exposures and compared to those of two other OPs that either do not increase (fenthion) or possibly suppress liver cancer (parathion) in mice. None of the chemicals caused increases in liver weight/body weight or histopathological changes in the liver. Parathion decreased liver cell proliferation after 7 and 28 days while the other chemicals had no effects. There was no evidence for hepatotoxicity in any of the treatment groups. Full-genome microarray analysis of the livers from the 7 and 28 day treatments demonstrated that methidathion and fenthion regulated a large number of overlapping genes, while parathion regulated a unique set of genes. Examination of cytochrome P450 enzyme activities and use of predictive gene expression biomarkers found no consistent evidence for activation of AhR, CAR, PXR, or PPARα. Parathion suppressed the male-specific gene expression pattern through STAT5b, similar to genetic and dietary conditions that decrease liver tumor incidence in mice. Overall, these findings indicate that methidathion causes liver cancer by a mechanism that does not involve common mechanisms of liver cancer induction.


Asunto(s)
Transformación Celular Neoplásica/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Genómica , Insecticidas/toxicidad , Neoplasias Hepáticas/genética , Hígado/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Receptor de Androstano Constitutivo/agonistas , Receptor de Androstano Constitutivo/genética , Receptor de Androstano Constitutivo/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Fentión/toxicidad , Perfilación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Compuestos Organotiofosforados/toxicidad , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Paratión/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
2.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847143

RESUMEN

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Asunto(s)
Encéfalo/metabolismo , Aceite de Coco/farmacología , Metabolismo Energético/efectos de los fármacos , Aceites de Pescado/farmacología , Mitocondrias/metabolismo , Aceite de Oliva/farmacología , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Microglía/metabolismo , Ratas , Ratas Endogámicas WKY
3.
Nanotoxicology ; 13(6): 795-811, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30938207

RESUMEN

Human oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions.


Asunto(s)
Cobre/toxicidad , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Animales , Células Cultivadas , Cobre/química , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Glutatión/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mucosa Intestinal/metabolismo , Nanopartículas del Metal/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Povidona/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Sci Rep ; 9(1): 145, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644404

RESUMEN

Heart rate assays in wild-type zebrafish embryos have been limited to analysis of one embryo per video/imaging field. Here we present for the first time a platform for high-throughput derivation of heart rate from multiple zebrafish (Danio rerio) embryos per imaging field, which is capable of quickly processing thousands of videos and ideal for multi-well platforms with multiple fish/well. This approach relies on use of 2-day post fertilization wild-type embryos, and uses only bright-field imaging, circumventing requirement for anesthesia or restraint, costly software/hardware, or fluorescently-labeled animals. Our original scripts (1) locate the heart and record pixel intensity fluctuations generated by each cardiac cycle using a robust image processing routine, and (2) process intensity data to derive heart rate. To demonstrate assay utility, we exposed embryos to the drugs epinephrine and clonidine, which increased or decreased heart rate, respectively. Exposure to organic extracts of air pollution-derived particulate matter, including diesel or biodiesel exhausts, or wood smoke, all complex environmental mixtures, decreased heart rate to varying degrees. Comparison against an established lower-throughput method indicated robust assay fidelity. As all code and executable files are publicly available, this approach may expedite cardiotoxicity screening of compounds as diverse as small molecule drugs and complex chemical mixtures.


Asunto(s)
Frecuencia Cardíaca/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Cardiotoxicidad , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Procesamiento de Imagen Asistido por Computador , Material Particulado/toxicidad , Pez Cebra/embriología
5.
Toxicol Sci ; 149(2): 312-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26519955

RESUMEN

Current strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor alpha (PPARα). Male B6C3F1 mice were exposed for 7 days to di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPARα activity and liver tumorigenicity. Each phthalate increased expression of select PPARα target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (relative liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPARα activation were 29, 370, and 676 mg/kg/day for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg/day) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molecular indicators and a later phenotypic outcome. Thresholds varied widely by marker, from 2-fold (Pdk4 and proliferation LI) to 30-fold (Acot1) induction to reach hypothetical tumorigenic expression levels. These findings highlight key issues in defining thresholds for biological adversity based on molecular changes.


Asunto(s)
Neoplasias Hepáticas Experimentales/inducido químicamente , PPAR alfa/fisiología , Animales , Benchmarking , Peso Corporal/efectos de los fármacos , Proliferación Celular , Dietilhexil Ftalato/toxicidad , Relación Dosis-Respuesta a Droga , Modelos Lineales , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Estrés Oxidativo , Ácidos Ftálicos/toxicidad , Reacción en Cadena de la Polimerasa
6.
ACS Nano ; 7(3): 1929-42, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23387956

RESUMEN

The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus assay, MN) in vitro, no study has systematically assessed the influence of medium composition on the physicochemical characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2 nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and influence on cell cycle in human lung epithelial cells using three different nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.1% bovine serum albumin (KB); a synthetic broncheoalveolar lavage fluid containing PBS, 0.6% bovine serum albumin and 0.001% surfactant (DM); or KGM with 10% fetal bovine serum (KF). The comet assay showed that TiO2 nanoparticles induced similar amounts of DNA damage in all three media, independent of the amount of agglomeration, cellular interaction, or cell-cycle changes measured by flow cytometry. In contrast, TiO2 nanoparticles induced MN only in KF, which is the medium that facilitated the lowest amount of agglomeration, the greatest amount of nanoparticle cellular interaction, and the highest population of cells accumulating in S phase. These results with TiO2 nanoparticles in KF demonstrate an association between medium composition, particle uptake, and nanoparticle interaction with cells, leading to chromosomal damage as measured by the MN assay.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Nanopartículas del Metal/toxicidad , Mutágenos/toxicidad , Titanio/toxicidad , Animales , Bovinos , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Medios de Cultivo/química , Humanos , Nanopartículas del Metal/ultraestructura , Pruebas de Micronúcleos , Albúmina Sérica Bovina
7.
Environ Mol Mutagen ; 52(3): 238-43, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20740636

RESUMEN

Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide. Heterozygous mice of strain B6;129S7-Sod1(tm1Leb)/J were obtained from Jackson Laboratories and bred to produce offspring that were heterozygous (+/Sod1(tm1Leb)), homozygous wild-type (+/+), and homozygous knockout (Sod1(tm1Leb) /Sod1(tm1Leb)) for the Cu/Zn superoxide dismutase (Sod1) gene. Splenocytes from these mice were exposed to several concentrations of either sodium arsenite (As3 [0-200 µM]), monomethylarsonous acid (MMA3 [0-10 µM]), or dimethylarsinous acid (DMA3 [0-10 µM]) for 2 hr. Cells were then examined for DNA damage using the alkaline single cell gel electrophoresis assay. Methyl methanesulfonate (MMS) was used as a positive control. Splenocytes from each of the three genotypes for Sod1 were equally sensitive to MMS and As3. However, at equimolar concentrations, DMA3 and MMA3 produced significantly more DNA damage in the homozygous knockout mouse splenocytes than in the splenocytes from the wild-type or heterozygous mice. These findings suggest that superoxide is involved either directly or indirectly in producing DNA damage in cells exposed to trivalent methylated arsenicals. These arsenicals may generate reactive oxygen species that damage DNA. This DNA damage may be a key factor in initiating cancer in vivo.


Asunto(s)
Arsenitos/toxicidad , Ácido Cacodílico/análogos & derivados , Carcinógenos Ambientales/toxicidad , Daño del ADN , Compuestos Organometálicos/toxicidad , Compuestos de Sodio/toxicidad , Superóxido Dismutasa/metabolismo , Animales , Ácido Cacodílico/toxicidad , Femenino , Heterocigoto , Masculino , Ratones , Ratones Noqueados , Bazo/efectos de los fármacos , Bazo/metabolismo , Superóxido Dismutasa/genética
8.
Mutat Res ; 634(1-2): 51-9, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17686649

RESUMEN

Urinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay. The goal of this study was to develop an optimized protocol to evaluate DNA damage in the urinary bladder transitional epithelium. This was achieved by an enzymatic stripping method (trypsin-EDTA incubation plus gentle scraping) to selectively harvest transitional cells from rat bladders, and the use of the alkaline Comet assay to detect DNA strand breaks, alkaline labile sites, and DNA-protein crosslinks. Step by step procedures are reported here. Cells collected from a single rat bladder were sufficient for multiple Comet assays. With this new protocol, increases in DNA damage were detected in transitional cells after in vitro exposure to the positive control agents, hydrogen peroxide or formaldehyde. Repair of the induced DNA damage occurred within 4h. This indicated the capacity for DNA repair was maintained in the harvested cells. The new protocol provides a simple and inexpensive method to detect various types of DNA damage and to measure DNA damage repair in urinary bladder transitional cells.


Asunto(s)
Separación Celular/métodos , Ensayo Cometa , Daño del ADN , Vejiga Urinaria/citología , Vejiga Urinaria/efectos de los fármacos , Animales , Células Epiteliales/efectos de los fármacos , Femenino , Masculino , Ratas , Ratas Endogámicas F344
9.
Mutat Res ; 607(2): 231-9, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16765633

RESUMEN

Dichloromethane (DCM) is considered a probable human carcinogen. Laboratory studies have shown an increased incidence of lung and liver cancer in mice but not in rats or hamsters. Despite the correlation between metabolism of DCM by the glutathione-S-transferase (GST) pathway and the occurrence of tumors in different species, the mechanism of tumor induction by DCM metabolites produced through the GST pathway remains unclear. In this study a V79 cell line stably transfected with the murine GST theta 1 gene (mGSTT1) was compared to the parent cell line (MZ) to determine how the construct affects DCM metabolism and the sensitivity of the cell line to DNA damage and cytotoxicity. V79 cells were treated with DCM (2.5-10mM) or formaldehyde (150-600muM) for 2h. Also, formaldehyde produced by V79 cytosol metabolism of DCM was measured spectrophotometrically. DNA damage and DNA-protein crosslinks were measured by the standard and proteinase K-modified alkaline single cell gel electrophoresis (SCG) assays. Cytotoxicity was assessed by trypan blue stain exclusion, the Live/Dead((R)) cell viability/cytotoxicity kit for animal cells, and the neutral red assay. After DCM treatment a significant concentration-dependent increase in tail moment in the V79 MZ cells was observed compared to a significant concentration-dependent decrease in tail moment in the V79 mGSTT1 cells. Post-incubation with proteinase K significantly increased DNA migrations in DCM-treated V79 mGSTT1 cells. DCM formed significantly higher levels of formaldehyde in the cytosol of the V79 mGSTT1 cells than in the cytosol of the V79 MZ cells. Results using the cytotoxicity assays were comparable using the trypan blue and Live/Dead((R)) assays, neither showing a difference in response between the two cell lines when exposed to either formaldehyde or DCM. These results indicate that V79 mGSTT1 can metabolize DCM to a genotoxic and cytotoxic metabolite, which is likely formaldehyde. This is the first time that the magnitude of the GSTT1 effect can be observed in mammalian cells without confounding caused by using cells with different genetic backgrounds.


Asunto(s)
Carcinógenos/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Aductos de ADN/metabolismo , Glutatión Transferasa/genética , Cloruro de Metileno/metabolismo , Animales , Carcinógenos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Cricetinae , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Formaldehído/metabolismo , Formaldehído/toxicidad , Glutatión Transferasa/metabolismo , Cloruro de Metileno/toxicidad , Sensibilidad y Especificidad , Factores de Tiempo , Transfección
10.
Mutat Res ; 572(1-2): 98-112, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15790493

RESUMEN

1,1-Dichloropropene (1,1-DCPe) is a contaminant of some source waters used to make drinking water. Because of this and the fact that no toxicological data were available for this compound, which is structurally similar to the rodent carcinogen 1,3-dichloropropene (1,3-DCPe), 1,1-DCPe was placed on the Contaminant Candidate List of the US Environmental Protection Agency. Consequently, we have performed a hazard characterization of 1,1-DCPe by evaluating its mutagenicity in the Salmonella assay and its DNA damaging (comet assay) and apoptotic (caspase assay) activities in human lymphoblastoid cells. In Salmonella, 1,1-DCPe was not mutagenic in strains TA98, TA100, TA1535, or TA104 +/-S9 mix. However, it was clearly mutagenic in strain RSJ100, which expresses the rat GSTT1-1 gene. 1,1-DCPe did not induce DNA damage in GSTT1-1-deficient human lymphoblastoid cells, and it induced apoptosis in these cells only at 5 mM. Consistent with its mutagenesis in RSJ100, 1,1-DCPe reacted with glutathione (GSH) in vitro, suggesting an addition-elimination mechanism to account for the detected GSH conjugate. 1,1-DCPe was approximately 5000 times more mutagenic than its ethene congener 1,1-dichloroethylene (1,1-DCE or vinylidene chloride). Neither 1,1-DCE nor 1,3-DCPe showed enhanced mutagenicity in strain RSJ100, indicating a lack of activation of these congeners by GSTT1-1. Thus, 1,1-DCPe is a base-substitution mutagen requiring activation by GSTT1-1, possibly involving the production of a reactive episulfonium ion. This bioactivation mechanism of 1,1-DCPe is different from that of its congeners 1,1-DCE and 1,3-DCPe. The presence of 1,1-DCPe in source waters could pose an ecological or human health risk. Occurrence data for 1,1-DCPe in finished drinking water are needed to estimate human exposure to, and possible health risks from, this mutagenic compound.


Asunto(s)
Compuestos Alílicos/toxicidad , Glutatión Transferasa/metabolismo , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Compuestos Alílicos/metabolismo , Animales , Apoptosis , Biotransformación , Línea Celular , Ensayo Cometa , Humanos , Hidrocarburos Clorados , Microsomas Hepáticos/metabolismo , Mutágenos/metabolismo , Ratas , Salmonella typhimurium/genética , Relación Estructura-Actividad , Contaminantes Químicos del Agua/metabolismo
11.
Environ Mol Mutagen ; 42(3): 192-205, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14556226

RESUMEN

Arsenic is a prevalent human carcinogen whose mutagenicity has not been characterized fully. Exposure to either form of inorganic arsenic, As(III) or As(V), can result in the formation of at least four organic metabolites: monomethylarsonic acid, monomethylarsonous acid (MMA(III)), dimethylarsinic acid, and dimethylarsinous acid (DMA(III)). The methylated trivalent species, as well as some of the other species, have not been evaluated previously for the induction of chromosome aberrations, sister chromatid exchanges (SCE), or toxicity in cultured human peripheral blood lymphocytes; for mutagenicity in L5178Y/Tk(+/-) mouse lymphoma cells or in the Salmonella reversion assay; or for prophage-induction in Escherichia coli. Here we evaluated the arsenicals in these assays and found that MMA(III) and DMA(III) were the most potent clastogens of the six arsenicals in human lymphocytes and the most potent mutagens of the six arsenicals at the Tk(+/-) locus in mouse lymphoma cells. The dimethylated arsenicals were also spindle poisons, suggesting that they may be ultimate forms of arsenic that induce aneuploidy. Although the arsenicals were potent clastogens, none were potent SCE inducers, similar to clastogens that act via reactive oxygen species. None of the six arsenicals were gene mutagens in Salmonella TA98, TA100, or TA104; and neither MMA(III) nor DMA(III) induced prophage. Our results show that both methylated As(V) compounds were less cytotoxic and genotoxic than As(V), whereas both methylated As(III) compounds were more cytotoxic and genotoxic than As(III). Our data support the view that MMA(III) and DMA(III) are candidate ultimate genotoxic forms of arsenic and that they are clastogens and not gene mutagens. We suggest that the clastogenicity of the other arsenicals is due to their metabolism by cells to MMA(III) or DMA(III).


Asunto(s)
Arsenicales/farmacología , Mutágenos/toxicidad , Mutación , Aberraciones Cromosómicas , Daño del ADN , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/ultraestructura , Metilación , Salmonella/genética
12.
Mutat Res ; 521(1-2): 91-102, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12438007

RESUMEN

Benzo[a]pyrene (B[a]P) is the most thoroughly studied polycyclic aromatic hydrocarbon (PAH). Many mechanisms have been suggested to explain its carcinogenic activity, yet many questions still remain. K-region dihydrodiols of PAHs are metabolic intermediates depending on the specific cytochrome P450 and had been thought to be detoxification products. However, K-region dihydrodiols of several PAHs have recently been shown to morphologically transform mouse embryo C3H10T1/2CL8 cells (C3H10T1/2 cells). Because K-region dihydrodiols are not metabolically formed from PAHs by C3H10T1/2 cells, these cells provide a useful tool to independently study the mechanisms of action of PAHs and their K-region dihydrodiols. Here, we compare the morphological cell transforming, DNA damaging, and DNA adducting activities of the K-region dihydrodiol of B[a]P, trans-B[a]P-4,5-diol with B[a]P. Both trans-B[a]P-4,5-diol and B[a]P morphologically transformed C3H10T1/2 cells by producing both Types II and III transformed foci. The morphological cell transforming and cytotoxicity dose response curves for trans-B[a]P-4,5-diol and B[a]P were indistinguishable. Since morphological cell transformation is strongly associated with mutation and/or larger scale DNA damage in C3H10T1/2 cells, the identification of DNA damage induced in these cells by trans-B[a]P-4,5-diol was sought. Both trans-B[a]P-4,5-diol and B[a]P exhibited significant DNA damaging activity without significant concurrent cytotoxicity using the comet assay, but with different dose responses and comet tail distributions. DNA adduct patterns from C3H10T1/2 cells were examined after trans-B[a]P-4,5-diol or B[a]P treatment using 32P-postlabeling techniques and improved TLC elution systems designed to separate polar DNA adducts. While B[a]P treatment produced one major DNA adduct identified as anti-trans-B[a]P-7,8-diol-9,10-epoxide-deoxyguanosine, no stable covalent DNA adducts were detected in the DNA of trans-B[a]P-4,5-diol-treated cells. In summary, this study provides evidence for the DNA damaging and morphological cell transforming activities of the K-region dihydrodiol of B[a]P, in the absence of covalent stable DNA adducts. While trans-B[a]P-4,5-diol and B[a]P both induce morphological cell transformation, their activities as DNA damaging agents differ, both qualitatively and quantitatively. In concert with the morphological cell transformation activities of other K-region dihydrodiols of PAHs, these data suggest a new mechanism/pathway for the morphological cell transforming activities of B[a]P and its metabolites.


Asunto(s)
Benzo(a)pireno/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Aductos de ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dihidroxidihidrobenzopirenos/química , Dihidroxidihidrobenzopirenos/toxicidad , Animales , Benzo(a)pireno/química , Células Cultivadas , Ensayo Cometa , Aductos de ADN/química , Daño del ADN/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Marcaje Isotópico , Mamíferos , Ratones , Pruebas de Mutagenicidad/métodos , Radioisótopos de Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...